Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands.

نویسندگان

  • David Remillard
  • Dennis L Buckley
  • Joshiawa Paulk
  • Gerard L Brien
  • Matthew Sonnett
  • Hyuk-Soo Seo
  • Shiva Dastjerdi
  • Martin Wühr
  • Sirano Dhe-Paganon
  • Scott A Armstrong
  • James E Bradner
چکیده

The bromodomain-containing protein BRD9, a subunit of the human BAF (SWI/SNF) nucleosome remodeling complex, has emerged as an attractive therapeutic target in cancer. Despite the development of chemical probes targeting the BRD9 bromodomain, there is a limited understanding of BRD9 function beyond acetyl-lysine recognition. We have therefore created the first BRD9-directed chemical degraders, through iterative design and testing of heterobifunctional ligands that bridge the BRD9 bromodomain and the cereblon E3 ubiquitin ligase complex. Degraders of BRD9 exhibit markedly enhanced potency compared to parental ligands (10- to 100-fold). Parallel study of degraders with divergent BRD9-binding chemotypes in models of acute myeloid leukemia resolves bromodomain polypharmacology in this emerging drug class. Together, these findings reveal the tractability of non-BET bromodomain containing proteins to chemical degradation, and highlight lead compound dBRD9 as a tool for the study of BRD9.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SS18 Together with Animal-Specific Factors Defines Human BAF-Type SWI/SNF Complexes

BACKGROUND Nucleosome translocation along DNA is catalyzed by eukaryotic SNF2-type ATPases. One class of SNF2-ATPases is distinguished by the presence of a C-terminal bromodomain and is conserved from yeast to man and plants. This class of SNF2 enzymes forms rather large protein complexes that are collectively called SWI/SNF complexes. They are involved in transcription and DNA repair. Two broa...

متن کامل

Impact of the Nature and Size of the Polymeric Backbone on the Ability of Heterobifunctional Ligands to Mediate Shiga Toxin and Serum Amyloid P Component Ternary Complex Formation

Inhibition of AB(5)-type bacterial toxins can be achieved by heterobifunctional ligands (BAITs) that mediate assembly of supramolecular complexes involving the toxin's pentameric cell membrane-binding subunit and an endogenous protein, serum amyloid P component, of the innate immune system. Effective in vivo protection from Shiga toxin Type 1 (Stx1) is achieved by polymer-bound, heterobifunctio...

متن کامل

LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor†

The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomain...

متن کامل

BRD9 Inhibition, Alone or in Combination with Cytostatic Compounds as a Therapeutic Approach in Rhabdoid Tumors

Rhabdoid tumors (RT) are malignant neoplasms of early childhood. Despite intensive therapy, survival is poor and new treatment approaches are required. The only recurrent mutations in these tumors affect SMARCB1 and less commonly SMARCA4, both subunits of the chromatin remodeling complex SWItch/Sucrose Non-Fermentable (SWI/SNF). Loss of these two core subunits alters the function of the SWI/SNF...

متن کامل

9H-Purine Scaffold Reveals Induced-Fit Pocket Plasticity of the BRD9 Bromodomain

The 2-amine-9H-purine scaffold was identified as a weak bromodomain template and was developed via iterative structure based design into a potent nanomolar ligand for the bromodomain of human BRD9 with small residual micromolar affinity toward the bromodomain of BRD4. Binding of the lead compound 11 to the bromodomain of BRD9 results in an unprecedented rearrangement of residues forming the ace...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Angewandte Chemie

دوره 56 21  شماره 

صفحات  -

تاریخ انتشار 2017